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Collective dynamics in liquid lead: Generalized propagating excitations
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A microscopic approach to the investigation of generalized collective excitations, developed recently for
pure liquids, is applied to the study of the spectrum of collective excitations in a liquid metal. The calculations
are performed for liquid lead at two temperatu¢alsove the melting point and in high-temperature regamd
the results are compared. From the analysis of spectra, obtained for different basis sets of dynamical variables,
we conclude that there exist three branches of propagating collective excitations, which correspond to sound
and heat(high- and low-frequengywaves in the liquid. It is shown that the branch of low-frequency heat
waves contains a propagation gap in the hydrodynamic region. An analytical expression for the width of the
propagation gap for low-frequency heat waves is derived.
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I. INTRODUCTION bers beyond the hydrodynamic region. These propagating
modes were identified as “zero-sound” modes with the

Liquid metals are known as the systems with well-defineddamping coefficient, varying linearly with wave number.
collective propagating excitations, which could be visible asHowever, neither if11] nor in [3] has the origin of nona-
the side peaks in the dynamical structure fa§dt,w) up to  coustic collective excitations been clearly established.
k~1 A1 or even mord1], k andw being a wave number As another example of nonhydrodynamic collective exci-
and frequency, respectively. Although the shapes@, w) tations one can take the heat waves, which are sometimes
contains in general the information about all the processes inalled the “second-sound” modes or thermal waves. Heat
a liquid with long- and short-time scales, the side peaks argvaves in liquids are propagating collective excitations, intro-
usually considered as attributed mainly to the propagatingluced for the explanation of some experiments on heat trans-
density waves, so that it is believed that the dispersion ofer [12]. Within standard hydrodynamics only two mecha-
sound excitations can be extracted from the positions of Brilnisms of heat transfer in a liquid can be considered:
louin peaks. Well beyond the hydrodynamic region thethermodiffusion and propagating sound waves. Since propa-
propagating excitations become overdamped and can be obating heat waves cannot be obtained within a hydrodynamic
served in the dynamic structure factor as the more or lesgeatment, they belong to so-call&hetic collective excita-
pronounced shoulder, which have been visible in liquid bistions, possessing a finite lifetime even in the hydrodynamic
muth [2], for instance, even on the hidhside of the main limit, and contribute mainly to the relevant time correlation
peak of the static structure fact§(k). Recently, analysis of functions beyond the hydrodynamic region. The dispersion
scattering experiments and molecular dynanid®) simu-  of these collective excitations is not knowarpriori and can-
lations, performed for a semimetallic liquid Ga, has led to anot be studied within standard hydrodynamic theory or
conclusion about the existence of an additional “nonacouswithin the phenomenological approach, based on a
tic” high-frequency branch in the spectrum of collective ex- telegraphlike equatiofil2]. Therefore, a microscopic study
citations[3]. of this problem would also be of great interest.

Up to now the dynamics of binary systems had just been It is worth mentioning that the method, widely used in the
considered from the point of view of the existence of severaliterature for the estimation of the dispersion of propagating
branches of propagating excitations. The high-frequency exeollective excitations from the maximum position of the rel-
citations in binary liquids were associated with the “fast- evant spectral function, can be only applied under some spe-
sound” phenomenoifi4—6] or with opticlike excitations in  cial conditions(e.g., well-defined and well-separated collec-
the case of ionic solutions’,8]. In the most recent investi- tive excitation$ and fails beyond the hydrodynamic region.
gations[9,10] it was shown that opticlike excitations, caused For large wave numbers the propagating modes usually be-
by mass-concentration fluctuations, exist also in mixtures o€ome overdamped and are mixed each with the dtt@ so
simple liquids. However, we have found only a few reportsthat any time correlation function contains in general contri-
focused on the possibility to observe the nonhydrodynamidutions from all collective excitationgextended hydrody-
excitations in simple liquids. For example, in Rgf1] the  namic and kinetic onesTherefore, a theoretical method for
analysis of thermal neutron-scattering experiments for liquidhe analysis of time correlation functions which allows us to
Cs and Rb near the melting point allowed one to concludeseparate the corresponding mode contributions and to study
that in these metals short-wavelength collective excitationself-consistently the kinetic propagating excitations is
with anomalous dispersion could be observed for wave numnaeeded.

In the hydrodynamic limit K—0, w—0) the collective-

mode spectrum can be studied analyticillg,15. For small
*Present address: Department of Chemistry, University of Houswave numbers the longitudinal dynamics of a pure liquid is
ton, Houston, TX 77004. well described within the three-variable set of hydrodynamic
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variables[the particles’ densityi(k,t), the density of longi- Among theN, eigenvalues of the generalized hydrody-
tudinal currentd,(k,t), and the energy densig(k,t)], con- namic matrix, the lowest-lying ondén the smallk region
nected with the densities of additive conserved quantities. Bgorrespond usually to the generalized hydrodynamic modes.
solving the hydrodynamic equations, the spectrum of thredhe number of such modes depends on the number of hy-
hydrodynamic modestwo propagating sound excitations drodynamic variablesthree longitudinal modes in the case
and the relaxing thermodiffusive modeassociated with the ©Of a pure liquid and four ones for a binary mixtirand their
slowest dynamical processes in the system, can be foun@roperties in the hydrodynamic limit are in complete agree-
Beyond the hydrodynamic region short-time kinetic pro-ment with the predictions of linear hydrodynamics. All the
cesses become more important and standard hydrodynamie§ier eigenvalues correspond to Kieetic modes, being re-
fails to explain the dynamic properties of dense fluids forsponsible for the short-time behavior. We note once again
intermediate and |arge valuesloindw. There were several that these modes cannot be obtained within the standard hy'
attempts(see, e.g.[16,17)) to modify the analytical expres- drodynamic treatment, and their contributions can be very
sions, found within the hydrodynamic theory for the hydro- Significant beyond the hydrodynamic region. In particular, it
dynamic time correlation functions or their spectral func-was clearly shown for binary liquids that the “fast-sound”
tions, in which the idea of extendeck-dependent _phenomenorﬁ28] and the appearance of opticlike excitations
hydrodynamic modes has been used. However, it is evider? many-component liquid§9,10] could be explained only
that such approaches cannot be used for the study of nonhy taking into account kineticlike processes. In the case of
drodynamic kinetic excitations which are in fact additional Simple liquids even the physical origin of the kinetic-mode
modes excluded from the hydrodynamic treatment. formation was not studied in detail. In this paper we consider
A concept of generalized collective mod&CM's), pro- this _problem in more Qet§|l, taking as an example the dy-
posed initially in[17,18 for the investigation of time corre- Namical properties of liquid lead. .
lation functions of liquids beyond the hydrodynamic region ~The goals of this study aré) to obtain the spectra of
and developed latdi19,13 in a computer-adapted form be- generalized c<_)_llect|ve eXC|tat|ons_for liquid lead at qllfferent
ing free of any adjustable parameters, is now one of the modgmperaturesii) to study the origin of mode formation for
powerful methods for the study of extendedependent col- all the branches of longitudinal collective modes obtained,
lective modes, which allows us to consider simultaneousl)ﬂ”) to focus attention on the behavior of heat fluctuations in
the hydrodynamic and kinetic processes. The main idea o liquid metal and the emergence of heat waves, (@ando
this method is to extend the basis set of dynamical variablediSCuss in comparison the results obtained for generalized
by including in addition to hydrodynamic variables also theircollective modes at high and lovabove the melting poiit
time derivatives, which, it is supposed, describe correctly thé8mperatures. In our study we use the many-variable ap-
short-time processes. For practical needs the problem of ligiroximations of the generalized collective mode approach in
uid dynamics can be reducg20] to the spectral problem for pgrameter-free forni30], developed recently for simple lig-
the so-called generalized hydrodynamic matrix. The eigentids (see, e.g[20]). _ _
values of the generalized hydrodynamic matrix give the The paper is organized as follows: in Sec. Il a brief out-
spectrum of extended collective modes and the mode contrline of the method, used for calculations of collective exci-
butions to time correlation functions are expressed via théation spectra, is given; the results, obtained the generalized
associated eigenvectors. The static correlation functions g&llective modes, are analyzed in Sec. Ill, and the conclu-
well as so-called “hydrodynamic” correlation times can be Sions are formulated in Sec. IV. We will report the results
directly obtained in computer experiments or evaluated byobtalned for the separated mode contributions of liquid lead
means of the equilibrium theory. In general, the basis set of? Ref.[41].
N, dynamical variables generates tNgx N, secular equa-
tion and results irN, generalized collective moddsgigen-
values. Any time correlation function, constructed on the
dynamic variables from the basis set and calculated within
the GCM approachisuch a function will be called a GCM Let us consider a spatially homogeneous, isotropic system
function), can be represented as a sum of fhemode con-  of N identical classical particles of massin the volumeV.
tributions. In numerous studies, performed for Lennard-We start from the definition of the square matrix of time
Jones liquid$18,19, liquid metallic C§[21,22 and semime-  correlation functiong(k,t), each element of which is de-
tallic Bi [23], and liquid watel{24], it has been proved that fined as follows:
the GCM method is very useful for the investigation of time
correlation functions and the spectra of collective excitations 0 _ /A *
in pure liquids. Moreover, the same conclusion follows also Fij (kD =(Aik, O AT (k. 1)), @
from the results obtained for binary liquidig5]: in particu-
lar, for Lennard-Jones mixturg®6], “fast-sound” mixture  where the dynamic variable%;(k,t) and A;(k,t) belong to
HessNess [27,28, liquid glass-forming metallic alloy the basis sefA;i(k,t)}. The basis sefA;(k,t)} includes all
Mg7oZn3 [29,10, and metallic molten alloy LPb [10].  the densities of conserved quantities as well as their time
Hence, this method was tested in many applications and caferivatives. Let us suppose that tRe microscopic dynamic
be used as an appropriate one to attack the problem of theariablesA,(k,t) form the basis sdtA;(k,t)}, so thatFo(k,t)
observed kinetic excitations in a simple liquid. is anN, X N, square matrix.

II. GCM APPROACH: NINE-VARIABLE
APPROXIMATION
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The matrix equation for the Laplace transfokf(k,z) of Ny .
FO(k,t) can be written in the well-known forntsee, e.g., > Ti(KX)0=2a(KXi o, i=1,... N, (7)
[15)) =
[21 -1 Q(K) + M (k,2) JE(k,2) = F(K,0), (2) SO thatwe obtain
- N, P
whereiQ(k) andM(k,z) are the frequency matrix and the EMk =S Gij(k) ®
matrix of the memory functions, respectively. In the Mar- ER a=12+2z,(k)’
kovian approximation for the memory functions, when
M (k,z)=M(k,0), one obtains where
[21+T (k) JF¥(k,2) = FO(k,t=0), (3 i .
) Gij(k)= 2 XiaXaFij(k,0) ©)
where =

T(k)=—-iQ(k)+M(k,00=Fk,0[F%k,0]"* (4 is the weight coefficient describing a contribution of the
- modez, to the functionﬁ{\f(k,z). In time representation one
is the so-called generalized hydrodynamic matf¥, de-  nas the form
notes the Laplace-transformed matrix of time correlation

functions to be found in the Markovian approximation, and N,
is the identity matrix. Using Eq(3) it is straightforward to Fi'\j"(k,t)z E ij‘(k)exp{—za(k)t}. (10
derive the following equalities: a=1
“ M I Hence, as is seen from E.0), the time correlation function
fo Fo(k,tdt= fo FikDdt, ®) Fi"j"(k,t) can be expressed within the generalized mode ap-
proach as a weighted sum Nf, exponential terms, and each
FM(k,t=0)=F%k,t=0), (6) term of this sum is associated with the relevant effective

collective modez,(k). The precision of the GCM function
which are important from the point of view of sum rules (10) in the N,-mode description is controlled by the equali-
[31,32 and connect the moments of time correlation func-ties (5) and (6).
tions FM(k,t) andFo(k,t). Within the nine-variable approximatiof13] of the
The matrix equation3) can be solved analytically in parameter-free GCM method the basis set of dynamical vari-
terms of eigenvalueg, (k) and eigenvector&a:{xi'a} of  ables for the case of longitudinal dynamics in pure liquids
the matrixT (k) =||T;; (k)| [see Eq(4)], consists of the following operators:

AO K, t)={n(k,1),J,(k,t),e(k,1),d,(k,t),e(k,t),d,(k,t),e(k,t),J,(k,t),e(k,t)}, (12)

where overdots denote the order of the time derivative of the relevant operator. The basis set of dynamical variables is applied
to generate the eigenvalue problem from the generalized Langevin equation in Markovian approXib@tignIn our case
the 9x9 Hermitian matrix of static correlation functiof®(k,t=0) has the following form:

fon 0 fre  —ikfyy 0 0 —kfye ikfi; 0
0 fi3 0 0 —if3e —133 0 0 ifje
fre 0 fee —if3e 0 0 —fee  ifi3e 0

ikfy; 0 ifie 13 0 0 —if5.  —f33 0

FO(k) = 0 ifje 0 0 fee —ifje 0 0 —fa ’ (12)

0 33 0 0 ifje i3 0 0 —ifjs

—kfie 0 —foe ifie 0 0 fee —ifja 0

—ikfy; 0 —ifje  —f33 0 0 ifje fi5 0
0 —ifje 0 0 —fae  if3: 0 0 fse

where for simplicityf;; (k) are shown as the absolute values of relevant static correlation functions.
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Similarly, taking into account the properties of time correlation functid&19, one gets for the matrik®(k) = Fo(k, z
=0)

7'nnfnn ann 7'nefne 0 1:ne _ikaJ 0 0 _kfje
i i .
kfnn 0 Efne fJJ 0 0 _lfje _fJJ 0
i .
7'nnfne Efne 7'eefee 0 fee - |fje 0 0 - féé
k= o -f,; o0 0 ifye  fi 0 0 —ify |, (13
—fhe 0 —fee if3e 0 0 fee  —ifje 0
—ikfy; 0 —ifye —f33 0 0 ifje 33 0
0 —ifie 0 0 —fue ifie 0 0 fee
0 33 0 0 —if;5.  —fy 0 0 ifje
kfje 0 fee —ifie 0 0 —fae  if3e 0

where

7ii(K) = Fi(k,bdt (14)

1 fw
Fo(k,t=0)Jo
are the “hydrodynamic” correlation times, which are the only quantities within the parameter-free GCM method that keep the
information about time-dependent properties of the system.

It is seen in Egs(12) and(13) that in order to apply the developed method for the study of collective-mode spectrum of a

particular liquid, one has to calculate the static correlation functions needed as well as the “hydrodynamic” correlation times
7j(K). In particular, this can be done by combining MD simulations with the analytical expressions derived.

Ill. RESULTS AND DISCUSSION means a good reliabilittenough configurations for good sta-
tistics) of the static averages directly evaluated in MD. One

We performed MD simulations in a standard microca- .
nonical ensemble for liquid Pb at two thermodynamic pointS'Can note that for both temperatures the static structure factors
have the main peaks &t,~2.3 A~'. The amplitude of the

a high-temperature state at 1170 K with humber density i X )
=0.0289 A 2 and a state above melting temperature at g24nain pe_ak at the lower-temperature state is much higher than
K with number densityn=0.03094 A 3. In molecular dy- 2t the high-temperature state.
namics we studied a system of 1000 particles interactin% The static correlation functionsto(k), fed(k), and
through oscillating potentiad;;(r) at constant volume/  Tie(k), evaluated directly in MD for high- and low-
=L3. The smallest wave numbers achieved in MD werelemperature stategcircles and boxes, respectivglyare
kfr;]m:o_lggg Al and klmm:o_1973 K for high- and shown in Fig. 2. Within Newtonian dynamics any operator
low-temperature states, respectively. The time evolution offom the basis sed(?)(k,t) can be expressed in an analytical
hydrodynamic variables and their time derivatives was obform via positions and velocities of particles and spatial de-
served during a production run ovexa0® steps for each fivatives of the interatomic potentiasee[19]). Therefore,
temperature. The effective two-body potential was taken irfPn€ can evaluate directly in MD any static average between
an analytical form from Ref(33]. This potential reproduced basis variables within the same precision. Due to the analyti-
very well the experimental static structure factor of liquid cal form of the interatomic potential, we avoided a numerical
needed in MD in order to obtain the time evolution of dy-
namical variables from the basis gétl). This resulted in a
very smoothk dependence of static averages directly evalu-
Static structure factor§(k) at two temperatures consid- ated in MD. From Fig. 2 one can see that the static averages
ered are shown in Fig. 1. The functi@k), obtained as the f,,o(k) andf.4k) behave like the static structure fact(ik),
Fourier transform of the pair correlation functiofghown by  while the functionf;¢(k) increases linearly wittk in the
crossey is in very good agreement with the static averagesmallk region| f;.(k) ~k]. Another possibility for the cal-
fan(k) (shown by boxes evaluated directly by MD. This culation of fi,(k) is to find numerically the second-order

A. Static properties
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FIG. 1. Static structure factors for liquid Pb at two temperatures b
T,=623 K and T;,=1170 K: Squares represent static averages B 7
fan(k), evaluated directly in MD, and crosses corresponé(tc),
obtained via Fourier transform of the pair correlation function. 0 . . . . .

0 0.5 1 1.5 2 25 3
time derivative of the time correlation functidn,(k,t) at k(A")
t=0. It is seen in Fig. 2 that both methodbe results of
direct calculation of static averages are shown by open FIG. 2. Static averages,«(k), fee(k), and fie(k), evaluated
circles and open squares, and the dates for the numericdirectly in MD_. Squares correspond to the low-temperature state at
second derivative of the relevant time correlation function?23 K. and circles to the temperature 1170 K. In the lower frame
are plotted by crossgsllow us to obtain almost identical CroSses correspond to the valuesfgi(k), obtained via numerical
values. In this study the numerical method for the evaluatiorfi€"vatives of the relevant time correlation functiontat0. Lines
of static averagessecond ongwas used only for calcula- denote the spline interpolation.
tions of the three highest-order static correlation functions,

constructed on the operators with three dots. This allowed us ~ Cp(k) Co(k) = Cy(k)+ keT?a?(K) 19
to decrease sufficiently the time of MD production runs. All y(k)= Cy(k)’ p(K)=Cy(k) fon(k)

other static averages were directly obtained in MD simula-

tions. wherekg denotes the Boltzmann constahi(k) is the gen-

Using our MD results for the static correlation functions, or4jized enthalpy per particley(k) is the generalized ther-
shown in Figs. 1 and 2, we have obtained as well thgy,,) expansion coefficient, ar@l, (k) andCp(k) are the gen-
k-dependent generalized thermodynamic quantities, definegjizeq specific heats at constant volume and constant

by the expressions given (118,19, namely, pressure per particle, respectively. In Fig&)3nd 3b) the

1 k dependence of these quantities is shown. The results ob-
HK) = Fae(k), (15)  tained for liquid Pb can be compared with those found pre-
B

viously for the generalized thermodynamic quantities of

Lennard-Jones fluifi19], liquid metallic Cs[21], and semi-
f2,(k) metallic Bi [23]. The generalized enthalpy for Pb does not
f (K] (16) change sign as a function kfas was observed in the case of

LJ liquid or Cs above the melting point, but such behavior is
1 very similar to the case of liquid Bi. Perhaps, this is con-

_ _ nected with the similarity in two-body potentials for Bi and

a(k)T= k T[H(k)f”“(k) Fne(k)1, @7 Pb (seg[2]). Another interesting feature is seen in the behav-

1
K)= —— | fodk) —
Cy(k) kBTz[ e k)
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ior of the generalized linear expansion coefficierfk). In  becomes much stronger, so that the range of application of
the rangek~1.5-2.0 A’ this function for the low- the viscoelastic approximation decreases.

temperature state at 623 K becomes negative, while at the

higher temperaturex(k) is always positive. For both tem-

peratures the generalized linear expansion coefficient as a B. Time correlation functions

function ofk has a maximum at the main peak position of the

static structure factor. The existence of a negative peak Ognergy and energy-energy time correlation functions are

a(k) was also observed in a liquid B23]. Such a specific -
feature requires additional study and the results will be re-ShOWn in Figs. &) and 4b) for two wave numbers at the

ported elsewhere. The generalized specific Hegtk) at low- and Elgh-tellrntﬁeratt;re ?_tatesa_relspecilvely. FO‘II st_mall
constant volume has a maximum in the region of the mairf’ave NUMDETS all these unctions display strong osciliations

peak of static structure factér=k,. The open squares &t with almost the same period. In contrast to liquid[@$,34),
=0 show the values of, estimated from temperature fluc- where oscillations of energy-energy time correlation func-

tuations during an MD run. The generalized ratio of specificions are overdamped even for smialalues, in the case of
heatsy(k) for the lower temperaturfthe lowest frame in  liquid Pb the energy-energy and energy-density time corre-
Fig. 3@] has a wide minimum in the region 1.3-2.1" & lation functions have even more pronounced oscillations than
with a value of~ 1.0, which indicates the region of applica- the density-density time correlation functions. Such a behav-
bility of viscoelastic theory for liquid Pb above the melting ior is observed in thé region up to~1 A~ It is interest-
point. This is in contrast with the result found for higher ing that at two temperatures and very clésealues, consid-
temperature where the generalized ratio of specific heatgred in MD, the difference in amplitude of oscillations is
y(k) takes the lowest value-1.04 atk~1.6 A% and the clearly seen in the time-dependence of time correlation func-
minimum is more sharp. This means that at higher temperations, especially for the density-energy and energy-energy
tures the coupling between thermal and density fluctuationime correlation functions.

The normalized MD-derived density-density, density-
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FIG. 4. Normalized time correlation functions for tkwalues:F,,,(k,t) (solid line), andF,.(k,t) (dashed ling F.«k,t) (dashed-dotted
line) at T,=623 K (a) andT,,=1170 K(b). Time scales are;=3.2064 ps and,=2.3935 ps, respectively.
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For the case of a simple liquid there exist three “hydro-temperature-dependent value. Propagating modes are associ-

rameters of the GCM method and contain information about

dynamic” correlation times, which are in fact the input pa- ated with the complex-conjugated eigenvalues

the time-dependent properties of the system investigated. In
Fig. 5 the correlation times,,(k), he(k), and oK) (mul-

Z, (k)= 04(K) Ziw,(k),

a=1,....,4,

tiplied by k?) are shown. One can see that all these function%herew (k) and o

+(K) are the frequency and damping of

AT i _ : : nary and real parts of the complex-conjugated eigenvalues
limit k—O the correlation times are inverse proportional t0 .o shown in Figs. @) and 6b) by the same symbols con-

2 : 2 .. .

k®, so that the functionk®r;;(k) tend to finite nonzero val- pecteq by spline-interpolated solid lines. Three purely real
ues wherk—0. The similar behavior of all three correlation eigenvalues, marked for convenience ds(k) with «
times as functions of wave number can be understood from.7 5 3 e ’shown in the lower frames of Fig&)@nd &b)
;I%wérl]’ where the relevant time correlation functions are,, symhols connected by spline-interpolated dotted lines.

are very similar and reflect the behavior of structure factony o ajevant collective excitation. respectively. The imaqi-
S(k) within the entirek range studied. In the hydrodynamic : 1O5P - d

One can see that purely real eigenvalukgék) and ds(k)
exist only for small wave numbeilsnside the propagating

C. Spectrum of generalized collective modes gap forz;(k)], while at somek value they merged. At thik
The eigenvalues of the generalized hydrodynamic matrioint the two relaxing modes disappear, and the pair of
T(k), defined by Eq(4) and generated by the basis §kt),  propagating excitations, (k) emerges instead. Only one re-
were calculated for liquid Pb at the low- and high- laxing moded,(k) exists in the wholé region studied. The
temperature states. The results are shown in Figs. @hd physical meaning of this mode will be discussed in more
6(b), respectively. As the functions df these eigenvalues detail in Ref.[41].
form the spectra of generalized collective excitations. It is

From the behavior of eigenvalueslat-0 one can estab-
seen in Fig. 6 that for both temperatures the spectra contaifsh that the pair of propagating modegk) corresponds to

in general four branches of generalized propagating modegieneralized sound excitations with linear dispersig(k) in
three of them exist over the wholerange considered, and the hydrodynamic region. For the reader’s convenience we
one branch, denoted ag(k), has the propagating gap in the have plotted the dispersions and damping coefficients of gen-
smallk region and appears fok larger than some eralized sound excitations(k), obtained at different tem-
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dispersion and damping coefficients of the generalized sound
mode just beyond the hydrodynamic region was associated
in Ref.[11] with the crossover from viscous to elastic behav-
- ior. In the region of elastic behavior generalized sound exci-
tations reflect some properties of so-called “zero-sound” ex-
citations, known for solidlike systems. In order to clarify this
problem additional study is needed.

Another interesting feature can be seen in Fig. 7 in the
7 behavior of the dispersion curves (k) of generalized
sound excitations at different temperatures. For the higher
temperatureT,,=1170 K, the minimum of the dispersion
g curve at k~k, is much more pronounced than &
=623 K. From real parts of the eigenvaluegk) one can
conclude that at higher temperatures the damping of sound
waves in the region of the maximum 8({k) is much stron-
- ger. This implies that for very high temperatures one can
expect the emergence of a propagating gap for sound excita-
tions in thisk region. We note also that far,=1170 K in
the regionk~k, the negative amplitude, describing the
mode contribution from the generalized sound excitations to
the density-density time correlation function, has been ob-
tained. This is in agreement with the result of H&B]. We
will report the study of mode contributions to the time cor-
L L L L L relation functions in Ref[41].

In full agreement with standard hydrodynamics another
generalized hydrodynamic eigenvalue, which is a purely real

FIG. 5. Correlation times(k) (open squars r,(k) (solid ~ ©ne in the smalk region and corresponds to the thermodif-
squarel and (k) (open circley all functions are calculated di- fusive mode, behaves like

rectly in MD simulations on the basis of E(.4) and multiplied by
k2. di(k)—D+k? k=0, (20)

peratures, separately in Fig. 7. For small wave numbers theith D+ being the thermodiffusion coefficient. For the small-
hydrodynamic behavior of the propagating sound excitationgst k points we have estimated the values @f and the
is well known[14,15 and is described by the expression results are given in Table I. It should be noted that the small-
est wave numbers reached in our MD for a liquid lead are
z, (k)=Tk?*ick, (199  not, in fact, in the hydrodynamic region, so that mode cou-
pling effects could change the hydrodynamic dependences
wherec, andT" are the adiabatic sound velocity and sound(19) and(20). Moreover, it is difficult to estimate the general
attenuation coefficient, respectively. The straight dash-dottetendency of the temperature dependence for the thermodiffu-
lines in the upper frames of Figs(ah and &b) allow one to  sion coefficient and sound attenuation coefficient by consid-
see that the branay(k) has in both cases a small “positive €ring just two thermodynamic points. This requires more de-
dispersion,” which is in complete agreement with the pre-tailed study and will be reported elsewhere.
dictions of mode coupling theoiy85,36. From the slope of The pair of propagating modes, (k) together with the
the dash-dotted lines we are able to estimate the speed tfermodiffusive model (k) form the set of the generalized
longitudinal acoustic waves in liquid Pb. These values adiydrodynamic collective excitations. All other eigenvalues
well as the estimated values for the sound attenuation coetorrespond to kinetic modes, the damping coefficients of
ficients are given in Table I. We were able to find in thewhich, in contrast to generalized hydrodynamic ones, tend to
literature only an experimental value for the sound velocitysome finite values whek goes to zero, so that these excita-
of lead at the melting point,=1790 m/s[37], which isin  tions have a finite lifetime and do not contribute to the hy-
quite nice agreement with our results given in Table I. drodynamic long-time behavior. However, as is seen in Fig.
Beyond the hydrodynamic region the mode coupling ef-6, the real parts of the generalized hydrodynamic and kinetic
fects become important and they change the hydrodynamimodes become comparable for intermediate and large values
dependencél9). For intermediate values éfwe can see in  of k. Hence, the role of kinetic modes increases beyond the
Fig. 7 that the real parts of the eigenvalugegk) behave hydrodynamic region.
almost like linear functions df. Note that the departure from The spectra of generalized collective excitations, obtained
the hydrodynamic dependenc¢g9) is on the side of lower within the nine-variablé1l) treatment, contain in the small-
values (negative dispersion which is again in agreement k region two branches of kinetic propagating excitations and
with the predictions of the mode coupling thedBb,36]. It  two kinetic relaxing modes. Note that the high-frequency
is worth mentioning that such a specikadependence of the branches of kinetic propagating modgg(k) andz, (k) cor-
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FIG. 6. Spectra of collective excitations of liquid Pb at 6234 and 1170 K(b), obtained for the nine-variable basis #&f)(k,t).
Complex and purely real eigenvalues are shown by symbols, connected by spline-interpolated solid and dashed lines, respectively. The same
symbols in the upper and lower frames correspond to the imaginary and real parts of the propagating modes, except for the case of the
splitting of the complex-conjugated eigenvaly€k) into two real ones for smak values. The straight dash-dotted lines in the upper frames
show the linear hydrodynamic dispersion of sound excitations.

respond to extremely short-time excitations and appeared ithe interplay between viscoelastic and thermal processes. For
our calculations because the dynamic variables with two and weak coupling one can expect that some branches in the
three dots in the basis sat®)(k,t) were taken into account spectrum obtained for the “coupled” basis &t” will be
[10,26. Whenk increases, an additional branafi(k) of  reproduced by branches evaluated on the separated subsets.
propagating modes appears as a result of the coupling b&uch a scheme was applig@,26] to the study of the trans-
tween the purely relaxing modek (k) andds(k). In order  verse dynamics in binary liquids and enabled us to prove the
to establish the physical meaning of these propagating excexistence opticlike excitations in nonionic binary liquids and
tations we have to perform a special analysis of spectrunestablish their origin.
formation. It is possible to do so by using separated subsets Let us define a new dynamic variatig¢k,t) as follows:
of the dynamical variables as was proposed, for instance, in f (K

ne

[26]. (k) =e(k,t) = £ 15

n(k,t). (21)

D. Analysis of the physical origin of different branches

of the propagating modes It is easy to verify that this variable, in contrast to the energy
To establish the origin of all kinetic branches in the spec-densitye(k,t), is orthogonal[19,20 to the density of par-
trum of collective excitations in liquid lead, we have used theticles n(k,t), so that the variablé(k,t) is more convenient
following quite general scheme. First, separated subsets &6r an analysis of thermal properties, decoupled from the
the dynamic variables, which have a clearer physical meanviscoelastic ones. Note that the set of the hydrodynamic vari-
ing, are introduced. For instance, one can split the basis sebles n(k,t),J(k,t),h(k,t) contains only orthogonal dy-
A®)(k,t) into two subsets of dynamic variables, describingnamic variables and can be extended by their time deriva-
the viscoelastic and thermal properties of a liquid, so that, ofives. The dynamical variabla(k,t) describes, in fact, the
the second step of our analysis, the spectra of generalizdteat density fluctuationg39,40, and in the hydrodynamic
collective modes are calculated for the separated subsets kit the thermodiffusive mode emerges exclusively due to
dynamical variables. Third, the results obtained are comheat density fluctuations. In Fig. 8 the MD results obtained at
pared with the spectrum found for the basis 88V. This T=1170 K for the time correlation functiof,,(k,t) are
allows us to investigate the origin of collective excitationsshown for differentk values. One can see that even for the
and to estimate the role of mode coupling effects, caused bymallest valuek,,,, achieved in our MD simulations, this
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N
& AL | about the decoupled thermal and viscoelastic properties of
the system and will give us additional information about the
5l | origin of generalized collective modes, calculated for the
“coupled” nine-variable set11) (see Fig. & The results of
0 . . . . ) our calculations, obtained for the separated sub@sand
0 0.5 1 15 2 25 3 (23), are presented in Fig. 9 by dashed and solid spline-
k (&) interpolated lines, respectively. For the sake of convenience,

the dispersions of generalized collective modes, found for
FIG. 7. Dispersion and damping coefficient of generalizedthe “coupled” set(11), are also shown here by symbols. It is

sound excitationzz(k) for |IqU|d Pb at 623 K(SOlld triangle$ and C|ear|y seen that the propagating m0d§$k) are caused by
1170 K(open triangles Solid lines denote the spline interpolation.

35 T T T T T
time correlation function does not have the single- . ﬁﬁifq) _______
exponential form expected from a separated treatment of heat 30 623K L ]
fluctuations[39]. ol e o i
To understand the shape of time correlation functions Xox e T —
Fnn(k,t), shown in Fig. 6, we considered the “thermal” 20 | « X x 8
subsetA(“M(k,t) of four dynamical variables, L |
AED(K, ) ={h(k,t),h(kb), Ak, A DY (22 10| 1
which together with another separated subs@l(k,t) (the ’g 5F .
“viscoelastic” one, =
= 0
=
APk, ={n(k1),31(k,1),Ji(k,1), J (K1), J (K, D)}, § ¢ -
(23) 30 - _
form in fact the basis sét®(k,t). Hence, one can expect that 25 .
the spectra of generalized collective modes, obtained for the %0 L i
separated subset®2) and (23), will reflect information %
TABLE |. Estimated parameters of generalized hydrodynamic i
excitations for liquid Pb at two thermodynamic stateg; I', and
D+ are the sound velocity, sound attenuation coefficient, and ther- ]
mal diffusivity, respectively.

TIK] n[A®] cs[mlis] [107 m¥s] [10 7 m?s]

FIG. 9. Imaginary parts of propagating collective excitations,
623 0.03094 1739.36 1.297 1.563 obtained for the separated subsé$)(k,t) (spline interpolated,
1170 0.02890  1602.61 1.139 1.283 solid line) and A" (k,t) (spline interpolated, dashed lineSym-
bols denote the same eigenvalues as in Fi¢®. &d Gb).
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heat fluctuations and describe the low-frequency heat waves 2 T T T T T
The brancle, (k) is well reproduced within the viscoelastic I 623K ---m—-
treatment and corresponds to generalized sound excitation: 1170K ---0---
One can see also that in the region of the main peak locatior~ 15+ _ ‘g
of the static structure factdt~k,, the branchz; (k) has a 3 N
minimum, which is much more pronounced at higher tem- && LSS
perature. This implies that for very high temperatures one2 “m,
can expect in liquid Pb a propagation gap for generalized‘\-‘_f: a
sound excitations with wave numbée~k,. The high- & w
frequency branches; (k) and z; (k) have mainly thermal 051 N T
and viscous origin, but their positions are strongly affected wlee g
by lower branches due to the mode coupling effects. It is alsc
interesting that fok>1 A~! the high-frequency branch of 0 o 05 1 15 5 25 3
heat waves, obtained for the separated su{®t follows k(AT
qualitatively the shape of the low-frequency heat branch.

In our recent studies of the dynamical properties for liquid FIG. 10. The second frequency moment of the “heat-density—
Bi [23] and Cs[34], performed within the nine-variable heat-density” time correlation function, divided &y, at tempera-
GCM approach, the high-frequency branches of heat wavetsiresT;=623 K (squaresandT,=1170 K(circles.
have been obtained with tlkedependence being very similar
to one found for the high-frequency heat modes in liquidcontributions of acousticlike excitations. However, as can be
lead (see symbols and upper dashed lines in Fjgl®con-  proved analytically within the hydrodynamic approach, this
trast to the case of liquid Pb, where the propagation gap fofunction is well described for small wave numbers by an
the low-frequency heat waves is found to be very sniq)l, exponential functior(24) with weak acoustic oscillations of
~0.4 A~1 the propagating gap in liquid Cs was much order of magnitude~(1—1/y). Thus, in the case of liquid
wider (ky~2 A1), and for liquid semimetallic Bi the low- metals, wheny is close to unity, the approximated expres-
frequency branch of heat waves was not found at all withirsion (24) for the treatment of heat fluctuations could be con-
the range ok studied k<3 A~1). Comparing the behavior sidered as acceptable.
of two branches of heat waves, obtained for the separated Within a two-variable approximation, which was previ-
subsetAM(k,t) (upper dashed lines in Fig) @nd within  ously used by us for the description of shear waves in liquids
the nine-variable treatmerishown by symbols in Fig.)9 [20,22,1Q, one can write down the expression for the gener-
one can make the following conclusion: the dynamical cou-alized hydrodynamic matrix4), evaluated for the two-
pling between heat and viscous processes leads to a redugariable setA®™={h(k,t),h(k,t)}, as follows:
tion of the propagation gap for low-frequency heat waves
and pushes upwards the high-frequency branch of heat waves 0 -1
in the range of small and intermediate values of wave T(k)=Fk,0[F%k,0] = — — , (25

numbers. @W2h  @2hTh

E. Low-frequency heat waves: Condition of existence where thek-dependent Maxwell-like time of relaxatiat (k)

In order to understand the difference found for the Iow—IS defined by Eq.(14), and the functionwyp(k) is the
second-order frequency moment df,,(k,t), namely,

frequency heat waves in liquid Pb and liquid Cs and to ob-— )
tain the expression for the propagating gap, which allows u€2n(K) =fin(k)/fhn(k). In Fig. 10 one can see that the func-
to estimate roughly its width, an additional investigation hastion w,(k) in the smallk region is proportional td?. Tak-

to be performed. It could be done by taking into account thaing into account the definitio(21) and the conserved prop-
the coupling between heat and density fluctuations becomesgties of the hydrodynamic variablegk,t) andn(k,t), such
negligible when the ratig18) of generalized specific heats a behavior can be obtained analytically. This allows us to
(k) is close to 1.014,15. Having this in mind let us con- rewrite the second-order frequency moment,(k) as fol-
sider the simplest nontrivial approximation within the GCM |ows:

approach which follows from a two-variable description,

based only on the heat density operators. Note that in the — k?GM(k)
one-variable approximation an one-exponential f¢&8| wan(K)= p (26)
_ 2.
FER(K D/F(R(K,0)=e(-Mnenkt (24)  wherep is the mass density and we introduced the function

G"(k) with the dimensionality of pressure, which has an
for the time correlation functiofr {})(k,t) follows immedi- analogy with the rigidity modulus in the case of transverse
ately from our scheme, whede andn are the thermal con- dynamics. In the case of heat fluctuatioB8(k) can be
ductivity coefficient and the number density, respectively. Incalled as ak-dependent heat-rigidity modulus. Obviously,
Fig. 8 one can see that even ferk,,, the MD-derived  G"(k) tends to a constant in hydrodynamic limit. The formal
function F,,(k,t) contains oscillations, which appear due to analogy in the treatment between the heat and shear pro-
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cesses is well known in the theory of continuous m¢d#. conjugated eigenvalues. It is worth mentioning that §)

Let us use this analogy to get an interpretation for ourcan be improved if we use for the calculation gf(k) a

theoretical results obtained in the framework of statisticalmore precise expression for the time correlation function

physics. Frn(k,t), which is known from hydrodynamic three-variable
Using Eq.(25) one can immediately write down the ex- theory[14,15. In such a case viscoelastic effects could be

pression for the eigenvalues of the generalized hydrodypartly taken into consideration. However, the general picture

namic matrixT (k) in the two-variable approximation: will remain the same: there always exists a propagation gap
o "™ for the low-frequency heat waves in a liquid with the width
. o (K) (k) Eg,h(k) ma(k)  — depending on the values of the thermal conductivity, specific
zy (k)= 2 = 4 —wan(k) | heat at constant volume, and heat-rigidity modulus.
(27) We end this section with an expression for the time cor-

relation functionF,(k,t) found in the two-variable approxi-
This equation gives in fact the spectrum of heat excitationgnation:

in our simplified theory. One can see that there exists two

different kinds of solution$27). In the case when F§12h)(k't) - z;, (k) 2t ot
wonr2(K) FIRkO 23 (k=2 (k)
— <1, (28
4 Zy (K) .
—— e, (30
one has two complex-conjugated eigenvalues 77 (k) — 2z, (K)
zy, = on(k) Tiwp(k), It is important to note that this expression reproduces explic-

. . . ity the frequency moments of the genuine functfeg,(k,t)
which describe the heat waves, propagating in opposite d'Up to the second order included.

rections, with frequency(k) and dampingo,(k). Other-
wise, we find two purely relaxing modes as was observed in
Fig. 6.

The condition(28) allows us to estimate the width of the  The main results of this study are the following.
propagating gap in which the low-frequency heat waves are (i) Beyond the hydrodynamic region the spectrum of col-
not supported by a liquid. For a rough estimation the exprestective excitations of liquid metallic Pb, obtained within the
sion (24) can be used for the calculation of the correlationnine-variable approximation of the parameter-free method of
time 7,(k). Then, using Eq(26) for small values ok, we  generalized collective modes, contains four branches of

IV. CONCLUSIONS

get the following equation: propagating excitations: generalized sound modes and one
low- and two high-frequency branches lahetic modes.
- ”_CV /G_ (29) (ii) Heat fluctuations cause not only thermodiffusive pro-
H™ 2 ' cesses, but for larger wave numbers they also stimulate the

o ) appearance of two branches of heat waves. In liquid lead
so that fork<ky, (inside the propagation gajpne has two there exists a rather small propagation gap for the low-
purely real eigenvalues, which in the smiltegion behave frequency heat waves.
like (i) A simple analytical two-variable treatment allows

coGh one to explain the existence of the propagation gap for low-
2 (K)=don(k) = VZ T e frequency heat waves and to estimate its width.
A nCy In Ref. [41] we will report the results obtained for the
\ mode contributions to time correlation functions and focus
27 (K) =drn(K) = K2 more attention on the role of the purely relaxing kinetic
n (K)=d1n(K) nCy moded,(k).

Note that the eigenvalug, (k) describes just the thermodif-
fusive hydrodynamic mode, calculated in the viscoelastic ap-
proximation (see [39]). Beyond the propagating gapk ( I.M. thanks the Fonds fuForderung der wissenschaftli-
<ky) we find two propagating excitations with complex- chen Forschung under Project No. P12422 TPH for support.
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