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Collective dynamics in liquid lead: Generalized propagating excitations

Taras Bryk* and Ihor Mryglod
Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, UA-79011 Lviv, Ukr
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A microscopic approach to the investigation of generalized collective excitations, developed recently for
pure liquids, is applied to the study of the spectrum of collective excitations in a liquid metal. The calculations
are performed for liquid lead at two temperatures~above the melting point and in high-temperature region! and
the results are compared. From the analysis of spectra, obtained for different basis sets of dynamical variables,
we conclude that there exist three branches of propagating collective excitations, which correspond to sound
and heat~high- and low-frequency! waves in the liquid. It is shown that the branch of low-frequency heat
waves contains a propagation gap in the hydrodynamic region. An analytical expression for the width of the
propagation gap for low-frequency heat waves is derived.
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I. INTRODUCTION

Liquid metals are known as the systems with well-defin
collective propagating excitations, which could be visible
the side peaks in the dynamical structure factorS(k,v) up to
k;1 Å21 or even more@1#, k andv being a wave numbe
and frequency, respectively. Although the shape ofS(k,v)
contains in general the information about all the processe
a liquid with long- and short-time scales, the side peaks
usually considered as attributed mainly to the propaga
density waves, so that it is believed that the dispersion
sound excitations can be extracted from the positions of B
louin peaks. Well beyond the hydrodynamic region t
propagating excitations become overdamped and can be
served in the dynamic structure factor as the more or
pronounced shoulder, which have been visible in liquid b
muth @2#, for instance, even on the high-k side of the main
peak of the static structure factorS(k). Recently, analysis o
scattering experiments and molecular dynamics~MD! simu-
lations, performed for a semimetallic liquid Ga, has led to
conclusion about the existence of an additional ‘‘nonaco
tic’’ high-frequency branch in the spectrum of collective e
citations@3#.

Up to now the dynamics of binary systems had just be
considered from the point of view of the existence of seve
branches of propagating excitations. The high-frequency
citations in binary liquids were associated with the ‘‘fas
sound’’ phenomenon@4–6# or with opticlike excitations in
the case of ionic solutions@7,8#. In the most recent investi
gations@9,10# it was shown that opticlike excitations, caus
by mass-concentration fluctuations, exist also in mixtures
simple liquids. However, we have found only a few repo
focused on the possibility to observe the nonhydrodyna
excitations in simple liquids. For example, in Ref.@11# the
analysis of thermal neutron-scattering experiments for liq
Cs and Rb near the melting point allowed one to conclu
that in these metals short-wavelength collective excitati
with anomalous dispersion could be observed for wave n
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bers beyond the hydrodynamic region. These propaga
modes were identified as ‘‘zero-sound’’ modes with t
damping coefficient, varying linearly with wave numbe
However, neither in@11# nor in @3# has the origin of nona-
coustic collective excitations been clearly established.

As another example of nonhydrodynamic collective ex
tations one can take the heat waves, which are someti
called the ‘‘second-sound’’ modes or thermal waves. H
waves in liquids are propagating collective excitations, int
duced for the explanation of some experiments on heat tr
fer @12#. Within standard hydrodynamics only two mech
nisms of heat transfer in a liquid can be consider
thermodiffusion and propagating sound waves. Since pro
gating heat waves cannot be obtained within a hydrodyna
treatment, they belong to so-calledkinetic collective excita-
tions, possessing a finite lifetime even in the hydrodynam
limit, and contribute mainly to the relevant time correlatio
functions beyond the hydrodynamic region. The dispers
of these collective excitations is not knowna priori and can-
not be studied within standard hydrodynamic theory
within the phenomenological approach, based on
telegraphlike equation@12#. Therefore, a microscopic stud
of this problem would also be of great interest.

It is worth mentioning that the method, widely used in t
literature for the estimation of the dispersion of propagat
collective excitations from the maximum position of the re
evant spectral function, can be only applied under some s
cial conditions~e.g., well-defined and well-separated colle
tive excitations! and fails beyond the hydrodynamic regio
For large wave numbers the propagating modes usually
come overdamped and are mixed each with the other@13#, so
that any time correlation function contains in general con
butions from all collective excitations~extended hydrody-
namic and kinetic ones!. Therefore, a theoretical method fo
the analysis of time correlation functions which allows us
separate the corresponding mode contributions and to s
self-consistently the kinetic propagating excitations
needed.

In the hydrodynamic limit (k→0, v→0) the collective-
mode spectrum can be studied analytically@14,15#. For small
wave numbers the longitudinal dynamics of a pure liquid
well described within the three-variable set of hydrodynam

s-
©2001 The American Physical Society02-1
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TARAS BRYK AND IHOR MRYGLOD PHYSICAL REVIEW E 63 051202
variables@the particles’ densityn(k,t), the density of longi-
tudinal currentJl(k,t), and the energy densitye(k,t)#, con-
nected with the densities of additive conserved quantities
solving the hydrodynamic equations, the spectrum of th
hydrodynamic modes~two propagating sound excitation
and the relaxing thermodiffusive mode!, associated with the
slowest dynamical processes in the system, can be fo
Beyond the hydrodynamic region short-time kinetic pr
cesses become more important and standard hydrodyna
fails to explain the dynamic properties of dense fluids
intermediate and large values ofk andv. There were severa
attempts~see, e.g.,@16,17#! to modify the analytical expres
sions, found within the hydrodynamic theory for the hydr
dynamic time correlation functions or their spectral fun
tions, in which the idea of extendedk-dependent
hydrodynamic modes has been used. However, it is evid
that such approaches cannot be used for the study of no
drodynamic kinetic excitations which are in fact addition
modes excluded from the hydrodynamic treatment.

A concept of generalized collective modes~GCM’s!, pro-
posed initially in@17,18# for the investigation of time corre
lation functions of liquids beyond the hydrodynamic regi
and developed later@19,13# in a computer-adapted form be
ing free of any adjustable parameters, is now one of the m
powerful methods for the study of extendedk-dependent col-
lective modes, which allows us to consider simultaneou
the hydrodynamic and kinetic processes. The main idea
this method is to extend the basis set of dynamical varia
by including in addition to hydrodynamic variables also th
time derivatives, which, it is supposed, describe correctly
short-time processes. For practical needs the problem of
uid dynamics can be reduced@20# to the spectral problem fo
the so-called generalized hydrodynamic matrix. The eig
values of the generalized hydrodynamic matrix give
spectrum of extended collective modes and the mode co
butions to time correlation functions are expressed via
associated eigenvectors. The static correlation function
well as so-called ‘‘hydrodynamic’’ correlation times can b
directly obtained in computer experiments or evaluated
means of the equilibrium theory. In general, the basis se
Nv dynamical variables generates theNv3Nv secular equa-
tion and results inNv generalized collective modes~eigen-
values!. Any time correlation function, constructed on th
dynamic variables from the basis set and calculated wi
the GCM approach~such a function will be called a GCM
function!, can be represented as a sum of theNv-mode con-
tributions. In numerous studies, performed for Lenna
Jones liquids@18,19#, liquid metallic Cs@21,22# and semime-
tallic Bi @23#, and liquid water@24#, it has been proved tha
the GCM method is very useful for the investigation of tim
correlation functions and the spectra of collective excitatio
in pure liquids. Moreover, the same conclusion follows a
from the results obtained for binary liquids@25#: in particu-
lar, for Lennard-Jones mixtures@26#, ‘‘fast-sound’’ mixture
He65Ne35 @27,28#, liquid glass-forming metallic alloy
Mg70Zn30 @29,10#, and metallic molten alloy Li4Pb @10#.
Hence, this method was tested in many applications and
be used as an appropriate one to attack the problem o
observed kinetic excitations in a simple liquid.
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Among theNv eigenvalues of the generalized hydrod
namic matrix, the lowest-lying ones~in the small-k region!
correspond usually to the generalized hydrodynamic mod
The number of such modes depends on the number of
drodynamic variables~three longitudinal modes in the cas
of a pure liquid and four ones for a binary mixture!, and their
properties in the hydrodynamic limit are in complete agre
ment with the predictions of linear hydrodynamics. All th
other eigenvalues correspond to thekinetic modes, being re-
sponsible for the short-time behavior. We note once ag
that these modes cannot be obtained within the standard
drodynamic treatment, and their contributions can be v
significant beyond the hydrodynamic region. In particular
was clearly shown for binary liquids that the ‘‘fast-sound
phenomenon@28# and the appearance of opticlike excitatio
in many-component liquids@9,10# could be explained only
by taking into account kineticlike processes. In the case
simple liquids even the physical origin of the kinetic-mo
formation was not studied in detail. In this paper we consi
this problem in more detail, taking as an example the
namical properties of liquid lead.

The goals of this study are~i! to obtain the spectra o
generalized collective excitations for liquid lead at differe
temperatures,~ii ! to study the origin of mode formation fo
all the branches of longitudinal collective modes obtain
~iii ! to focus attention on the behavior of heat fluctuations
a liquid metal and the emergence of heat waves, and~iv! to
discuss in comparison the results obtained for general
collective modes at high and low~above the melting point!
temperatures. In our study we use the many-variable
proximations of the generalized collective mode approach
parameter-free form@30#, developed recently for simple liq
uids ~see, e.g.,@20#!.

The paper is organized as follows: in Sec. II a brief o
line of the method, used for calculations of collective ex
tation spectra, is given; the results, obtained the general
collective modes, are analyzed in Sec. III, and the conc
sions are formulated in Sec. IV. We will report the resu
obtained for the separated mode contributions of liquid le
in Ref. @41#.

II. GCM APPROACH: NINE-VARIABLE
APPROXIMATION

Let us consider a spatially homogeneous, isotropic sys
of N identical classical particles of massm in the volumeV.
We start from the definition of the square matrix of tim
correlation functionsF0(k,t), each element of which is de
fined as follows:

Fi j
0 ~k,t !5^Ai~k,0!Aj* ~k,t !&, ~1!

where the dynamic variablesAi(k,t) andAj (k,t) belong to
the basis set$Ai(k,t)%. The basis set$Ai(k,t)% includes all
the densities of conserved quantities as well as their t
derivatives. Let us suppose that theNv microscopic dynamic
variablesAi(k,t) form the basis set$Ai(k,t)%, so thatF0(k,t)
is anNv3Nv square matrix.
2-2
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The matrix equation for the Laplace transformF̃0(k,z) of
F0(k,t) can be written in the well-known form~see, e.g.,
@15#!

@zI2 i V~k!1M̃ ~k,z!#F̃0~k,z!5F0~k,0!, ~2!

where i V(k) and M̃ (k,z) are the frequency matrix and th
matrix of the memory functions, respectively. In the Ma
kovian approximation for the memory functions, whe
M̃ (k,z).M̃ (k,0), one obtains

@zI1T~k!#F̃M~k,z!5F0~k,t50!, ~3!

where

T~k!52 i V~k!1M̃ ~k,0!5F0~k,0!@ F̃0~k,0!#21 ~4!

is the so-called generalized hydrodynamic matrix,F̃M de-
notes the Laplace-transformed matrix of time correlat
functions to be found in the Markovian approximation, anI
is the identity matrix. Using Eq.~3! it is straightforward to
derive the following equalities:

E
0

`

FM~k,t !dt5E
0

`

F0~k,t !dt, ~5!

FM~k,t50!5F0~k,t50!, ~6!

which are important from the point of view of sum rule
@31,32# and connect the moments of time correlation fun
tions FM(k,t) andF0(k,t).

The matrix equation~3! can be solved analytically in
terms of eigenvaluesza(k) and eigenvectorsX̂a5$Xi ,a% of
the matrixT(k)5iTi j (k)i @see Eq.~4!#,
05120
n

-

(
j 51

Nv

Ti j ~k!Xj ,a5za~k!Xi ,a , i 51, . . . ,Nv , ~7!

so that we obtain

F̃ i j
M~k,z!5 (

a51

Nv Gi j
a~k!

z1za~k!
, ~8!

where

Gi j
a~k!5(

l 51

Nv

XiaXa l
21Fl j ~k,0! ~9!

is the weight coefficient describing a contribution of th
modeza to the functionF̃ i j

M(k,z). In time representation one
has the form

Fi j
M~k,t !5 (

a51

Nv

Gi j
a~k!exp$2za~k!t%. ~10!

Hence, as is seen from Eq.~10!, the time correlation function
Fi j

M(k,t) can be expressed within the generalized mode
proach as a weighted sum ofNv exponential terms, and eac
term of this sum is associated with the relevant effect
collective modeza(k). The precision of the GCM function
~10! in the Nv-mode description is controlled by the equa
ties ~5! and ~6!.

Within the nine-variable approximation@13# of the
parameter-free GCM method the basis set of dynamical v
ables for the case of longitudinal dynamics in pure liqu
consists of the following operators:
s applied
A(9)~k,t !5$n~k,t !,Jl~k,t !,e~k,t !,J̇l~k,t !,ė~k,t !,J̈l~k,t !,ë~k,t !, Ĵ l~k,t !, ê~k,t !%, ~11!

where overdots denote the order of the time derivative of the relevant operator. The basis set of dynamical variables i
to generate the eigenvalue problem from the generalized Langevin equation in Markovian approximation@19,13#. In our case
the 939 Hermitian matrix of static correlation functionsF0(k,t50) has the following form:

F0~k!51
f nn 0 f ne 2 ik f JJ 0 0 2k fJ̇e ik f J̇J̇ 0

0 f JJ 0 0 2 i f J̇e 2 f J̇J̇ 0 0 i f J̈ė

f ne 0 f ee 2 i f J̇e 0 0 2 f ėė i f J̈ė 0

ik f JJ 0 i f J̇e f J̇J̇ 0 0 2 i f J̈ė 2 f J̈J̈ 0

0 i f J̇e 0 0 f ėė 2 i f J̈ė 0 0 2 f ëë

0 f J̇J̇ 0 0 i f J̈ė f J̈J̈ 0 0 2 i f Ĵë

2k fJ̇e 0 2 f ėė i f J̈ė 0 0 f ëë 2 i f Ĵë 0

2 ik f J̇J̇ 0 2 i f J̈ė 2 f J̈J̈ 0 0 i f Ĵë f Ĵ Ĵ 0

0 2 i f J̈ė 0 0 2 f ëë i f Ĵë 0 0 f êê

2 , ~12!

where for simplicityf i j (k) are shown as the absolute values of relevant static correlation functions.
2-3
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Similarly, taking into account the properties of time correlation functions@18,19#, one gets for the matrixF̃0(k)5F̃0(k,z
50)

F̃0~k!5

¨

tnnf nn
i

k
f nn tnef ne 0 f ne 2 ik f JJ 0 0 2k fJ̇e

i

k
f nn 0

i

k
f ne f JJ 0 0 2 i f J̇e 2 f J̇J̇ 0

tnnf ne
i

k
f ne teef ee 0 f ee 2 i f J̇e 0 0 2 f ėė

0 2 f JJ 0 0 i f J̇e f J̇J̇ 0 0 2 i f J̈ė

2 f ne 0 2 f ee i f J̇e 0 0 f ėė 2 i f J̈ė 0

2 ik f JJ 0 2 i f J̇e 2 f J̇J̇ 0 0 i f J̈ė f J̈J̈ 0

0 2 i f J̇e 0 0 2 f ėė i f J̈ė 0 0 f ëë

0 f J̇J̇ 0 0 2 i f J̈ė 2 f J̇J̇ 0 0 i f Ĵë

k f J̇e 0 f ėė 2 i f J̈ė 0 0 2 f ëë i f Ĵë 0

©
, ~13!

where

t i j ~k!5
1

Fi j
0 ~k,t50!

E
0

`

Fi j
0 ~k,t !dt ~14!

are the ‘‘hydrodynamic’’ correlation times, which are the only quantities within the parameter-free GCM method that ke
information about time-dependent properties of the system.

It is seen in Eqs.~12! and~13! that in order to apply the developed method for the study of collective-mode spectrum
particular liquid, one has to calculate the static correlation functions needed as well as the ‘‘hydrodynamic’’ correlatio
t i j (k). In particular, this can be done by combining MD simulations with the analytical expressions derived.
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III. RESULTS AND DISCUSSION

We performed MD simulations in a standard microc
nonical ensemble for liquid Pb at two thermodynamic poin
a high-temperature state at 1170 K with number densitn
50.0289 Å23 and a state above melting temperature at 6
K with number densityn50.03094 Å23. In molecular dy-
namics we studied a system of 1000 particles interac
through oscillating potentialF i j (r ) at constant volumeV
5L3. The smallest wave numbers achieved in MD we
kmin

h 50.1928 Å21 and kmin
l 50.1973 Å21 for high- and

low-temperature states, respectively. The time evolution
hydrodynamic variables and their time derivatives was
served during a production run over 33105 steps for each
temperature. The effective two-body potential was taken
an analytical form from Ref.@33#. This potential reproduced
very well the experimental static structure factor of liqu
lead over a wide temperature range@33#.

A. Static properties

Static structure factorsS(k) at two temperatures consid
ered are shown in Fig. 1. The functionS(k), obtained as the
Fourier transform of the pair correlation functions~shown by
crosses!, is in very good agreement with the static avera
f nn(k) ~shown by boxes!, evaluated directly by MD. This
05120
-
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e
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e

means a good reliability~enough configurations for good sta
tistics! of the static averages directly evaluated in MD. O
can note that for both temperatures the static structure fac
have the main peaks atkp'2.3 Å21. The amplitude of the
main peak at the lower-temperature state is much higher
at the high-temperature state.

The static correlation functionsf ne(k), f ee(k), and
f J̇e(k), evaluated directly in MD for high- and low
temperature states~circles and boxes, respectively!, are
shown in Fig. 2. Within Newtonian dynamics any opera
from the basis setA(9)(k,t) can be expressed in an analytic
form via positions and velocities of particles and spatial d
rivatives of the interatomic potential~see@19#!. Therefore,
one can evaluate directly in MD any static average betw
basis variables within the same precision. Due to the ana
cal form of the interatomic potential, we avoided a numeri
evaluation of the spatial derivatives ofF i j (r ), which were
needed in MD in order to obtain the time evolution of d
namical variables from the basis set~11!. This resulted in a
very smoothk dependence of static averages directly eva
ated in MD. From Fig. 2 one can see that the static avera
f ne(k) and f ee(k) behave like the static structure factorS(k),
while the function f J̇e(k) increases linearly withk in the
small-k region @ f J̇e(k);k#. Another possibility for the cal-
culation of f J̇e(k) is to find numerically the second-orde
2-4
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COLLECTIVE DYNAMICS IN LIQUID LEAD: . . . PHYSICAL REVIEW E 63 051202
time derivative of the time correlation functionFne(k,t) at
t50. It is seen in Fig. 2 that both methods~the results of
direct calculation of static averages are shown by o
circles and open squares, and the dates for the nume
second derivative of the relevant time correlation functio
are plotted by crosses! allow us to obtain almost identica
values. In this study the numerical method for the evaluat
of static averages~second one! was used only for calcula
tions of the three highest-order static correlation functio
constructed on the operators with three dots. This allowed
to decrease sufficiently the time of MD production runs. A
other static averages were directly obtained in MD simu
tions.

Using our MD results for the static correlation function
shown in Figs. 1 and 2, we have obtained as well
k-dependent generalized thermodynamic quantities, defi
by the expressions given in@18,19#, namely,

H~k!5
1

kBTk
f J̇e~k!, ~15!

CV~k!5
1

kBT2 F f ee~k!2
f ne

2 ~k!

f nn~k!
G , ~16!

a~k!T5
1

kBT
@H~k! f nn~k!2 f ne~k!#, ~17!

FIG. 1. Static structure factors for liquid Pb at two temperatu
Tl5623 K and Th51170 K: Squares represent static averag
f nn(k), evaluated directly in MD, and crosses correspond toS(k),
obtained via Fourier transform of the pair correlation function.
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g~k!5
CP~k!

CV~k!
, CP~k!5CV~k!1

kBT2a2~k!

f nn~k!
, ~18!

wherekB denotes the Boltzmann constant,H(k) is the gen-
eralized enthalpy per particle,a(k) is the generalized ther
mal expansion coefficient, andCV(k) andCP(k) are the gen-
eralized specific heats at constant volume and cons
pressure per particle, respectively. In Figs. 3~a! and 3~b! the
k dependence of these quantities is shown. The results
tained for liquid Pb can be compared with those found p
viously for the generalized thermodynamic quantities
Lennard-Jones fluid@19#, liquid metallic Cs@21#, and semi-
metallic Bi @23#. The generalized enthalpy for Pb does n
change sign as a function ofk as was observed in the case
LJ liquid or Cs above the melting point, but such behavior
very similar to the case of liquid Bi. Perhaps, this is co
nected with the similarity in two-body potentials for Bi an
Pb ~see@2#!. Another interesting feature is seen in the beha

s
s

FIG. 2. Static averagesf ne(k), f ee(k), and f J̇e(k), evaluated
directly in MD. Squares correspond to the low-temperature stat
623 K, and circles to the temperature 1170 K. In the lower fra
crosses correspond to the values off J̇e(k), obtained via numerical
derivatives of the relevant time correlation function att50. Lines
denote the spline interpolation.
2-5
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FIG. 3. Generalized thermody
namic quantities for liquid Pb a
Tl5623 K ~a! and Th51170 K
~b!: the generalized enthalpy pe
particle H(k), the generalized
thermal expansion coefficien
a(k), the generalized specific hea
at constant volume per particl
CV(k), and the generalized ratio
of specific heatsg(k). The open
square with a cross atk50 for
CV(k) denotes values estimate
from temperature fluctuations in
MD. Dotted and solid lines denote
the spline interpolation.
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ior of the generalized linear expansion coefficienta(k). In
the range k;1.5–2.0 Å21 this function for the low-
temperature state at 623 K becomes negative, while at
higher temperaturea(k) is always positive. For both tem
peratures the generalized linear expansion coefficient
function ofk has a maximum at the main peak position of t
static structure factor. The existence of a negative peak
a(k) was also observed in a liquid Bi@23#. Such a specific
feature requires additional study and the results will be
ported elsewhere. The generalized specific heatCV(k) at
constant volume has a maximum in the region of the m
peak of static structure factork'kp . The open squares atk
50 show the values ofCV estimated from temperature fluc
tuations during an MD run. The generalized ratio of spec
heatsg(k) for the lower temperature@the lowest frame in
Fig. 3~a!# has a wide minimum in the region 1.3–2.1 Å21

with a value of;1.0, which indicates the region of applica
bility of viscoelastic theory for liquid Pb above the meltin
point. This is in contrast with the result found for high
temperature where the generalized ratio of specific h
g(k) takes the lowest value;1.04 atk;1.6 Å21, and the
minimum is more sharp. This means that at higher temp
tures the coupling between thermal and density fluctuati
05120
he
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s

becomes much stronger, so that the range of applicatio
the viscoelastic approximation decreases.

B. Time correlation functions

The normalized MD-derived density-density, densit
energy, and energy-energy time correlation functions
shown in Figs. 4~a! and 4~b! for two wave numbers at the
low- and high-temperature states, respectively. For sm
wave numbers all these functions display strong oscillati
with almost the same period. In contrast to liquid Cs@21,34#,
where oscillations of energy-energy time correlation fun
tions are overdamped even for smallk values, in the case o
liquid Pb the energy-energy and energy-density time co
lation functions have even more pronounced oscillations t
the density-density time correlation functions. Such a beh
ior is observed in thek region up to;1 Å21. It is interest-
ing that at two temperatures and very closek values, consid-
ered in MD, the difference in amplitude of oscillations
clearly seen in the time-dependence of time correlation fu
tions, especially for the density-energy and energy-ene
time correlation functions.
2-6



COLLECTIVE DYNAMICS IN LIQUID LEAD: . . . PHYSICAL REVIEW E 63 051202
FIG. 4. Normalized time correlation functions for twok values:Fnn(k,t) ~solid line!, andFne(k,t) ~dashed line!, Fee(k,t) ~dashed-dotted
line! at Tl5623 K ~a! andTh51170 K ~b!. Time scales aret l53.2064 ps andth52.3935 ps, respectively.
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For the case of a simple liquid there exist three ‘‘hydr
dynamic’’ correlation times, which are in fact the input p
rameters of the GCM method and contain information ab
the time-dependent properties of the system investigated
Fig. 5 the correlation timestnn(k), tne(k), andtee(k) ~mul-
tiplied by k2) are shown. One can see that all these functi
are very similar and reflect the behavior of structure fac
S(k) within the entirek range studied. In the hydrodynam
limit k→0 the correlation times are inverse proportional
k2, so that the functionsk2t i j (k) tend to finite nonzero val-
ues whenk→0. The similar behavior of all three correlatio
times as functions of wave number can be understood f
Fig. 4, where the relevant time correlation functions a
shown.

C. Spectrum of generalized collective modes

The eigenvalues of the generalized hydrodynamic ma
T(k), defined by Eq.~4! and generated by the basis set~11!,
were calculated for liquid Pb at the low- and hig
temperature states. The results are shown in Figs. 6~a! and
6~b!, respectively. As the functions ofk these eigenvalue
form the spectra of generalized collective excitations. It
seen in Fig. 6 that for both temperatures the spectra con
in general four branches of generalized propagating mo
three of them exist over the wholek range considered, an
one branch, denoted asz1(k), has the propagating gap in th
small-k region and appears fork larger than some
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temperature-dependent value. Propagating modes are as
ated with the complex-conjugated eigenvalues

za
6~k!5sa~k!6 iva~k!, a51, . . . ,4,

whereva(k) and sa(k) are the frequency and damping o
the relevant collective excitation, respectively. The ima
nary and real parts of the complex-conjugated eigenva
are shown in Figs. 6~a! and 6~b! by the same symbols con
nected by spline-interpolated solid lines. Three purely r
eigenvalues, marked for convenience asda(k) with a
51,2,3, are shown in the lower frames of Figs. 6~a! and 6~b!
by symbols connected by spline-interpolated dotted lin
One can see that purely real eigenvaluesd1(k) and d3(k)
exist only for small wave numbers@inside the propagating
gap forz1(k)#, while at somek value they merged. At thisk
point the two relaxing modes disappear, and the pair
propagating excitationsz1

6(k) emerges instead. Only one re
laxing moded2(k) exists in the wholek region studied. The
physical meaning of this mode will be discussed in mo
detail in Ref.@41#.

From the behavior of eigenvalues atk→0 one can estab
lish that the pair of propagating modesz2(k) corresponds to
generalized sound excitations with linear dispersionvs(k) in
the hydrodynamic region. For the reader’s convenience
have plotted the dispersions and damping coefficients of g
eralized sound excitationsz2(k), obtained at different tem-
2-7



t
on

nd
tte

e
re

d
a

oe
he
it

ef
m

t

und
ted
v-
ci-
x-

is

the

her
n

und

an
cita-

e
to

ob-

r-

er
eal
if-

ll-

all-
are
u-
ces

al
iffu-
id-

de-

d
es
of

d to
a-
y-
ig.

etic
lues
the

ed
-
nd
cy

-

TARAS BRYK AND IHOR MRYGLOD PHYSICAL REVIEW E 63 051202
peratures, separately in Fig. 7. For small wave numbers
hydrodynamic behavior of the propagating sound excitati
is well known @14,15# and is described by the expression

z2
6~k!.Gk26 icsk, ~19!

wherecs and G are the adiabatic sound velocity and sou
attenuation coefficient, respectively. The straight dash-do
lines in the upper frames of Figs. 6~a! and 6~b! allow one to
see that the branchz2(k) has in both cases a small ‘‘positiv
dispersion,’’ which is in complete agreement with the p
dictions of mode coupling theory@35,36#. From the slope of
the dash-dotted lines we are able to estimate the spee
longitudinal acoustic waves in liquid Pb. These values
well as the estimated values for the sound attenuation c
ficients are given in Table I. We were able to find in t
literature only an experimental value for the sound veloc
of lead at the melting point,cs51790 m/s @37#, which is in
quite nice agreement with our results given in Table I.

Beyond the hydrodynamic region the mode coupling
fects become important and they change the hydrodyna
dependence~19!. For intermediate values ofk we can see in
Fig. 7 that the real parts of the eigenvaluesz2(k) behave
almost like linear functions ofk. Note that the departure from
the hydrodynamic dependence~19! is on the side of lower
values ~negative dispersion!, which is again in agreemen
with the predictions of the mode coupling theory@35,36#. It
is worth mentioning that such a specifick dependence of the

FIG. 5. Correlation timestnn(k) ~open squares!, tne(k) ~solid
squares!, andtee(k) ~open circles!: all functions are calculated di
rectly in MD simulations on the basis of Eq.~14! and multiplied by
k2.
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dispersion and damping coefficients of the generalized so
mode just beyond the hydrodynamic region was associa
in Ref. @11# with the crossover from viscous to elastic beha
ior. In the region of elastic behavior generalized sound ex
tations reflect some properties of so-called ‘‘zero-sound’’ e
citations, known for solidlike systems. In order to clarify th
problem additional study is needed.

Another interesting feature can be seen in Fig. 7 in
behavior of the dispersion curves Imz2(k) of generalized
sound excitations at different temperatures. For the hig
temperatureTh51170 K, the minimum of the dispersio
curve at k'kp is much more pronounced than atTl
5623 K. From real parts of the eigenvaluesz2(k) one can
conclude that at higher temperatures the damping of so
waves in the region of the maximum ofS(k) is much stron-
ger. This implies that for very high temperatures one c
expect the emergence of a propagating gap for sound ex
tions in thisk region. We note also that forTh51170 K in
the region k'kp the negative amplitude, describing th
mode contribution from the generalized sound excitations
the density-density time correlation function, has been
tained. This is in agreement with the result of Ref.@38#. We
will report the study of mode contributions to the time co
relation functions in Ref.@41#.

In full agreement with standard hydrodynamics anoth
generalized hydrodynamic eigenvalue, which is a purely r
one in the small-k region and corresponds to the thermod
fusive mode, behaves like

d1~k!→DTk2, k→0, ~20!

with DT being the thermodiffusion coefficient. For the sma
est k points we have estimated the values ofDT and the
results are given in Table I. It should be noted that the sm
est wave numbers reached in our MD for a liquid lead
not, in fact, in the hydrodynamic region, so that mode co
pling effects could change the hydrodynamic dependen
~19! and~20!. Moreover, it is difficult to estimate the gener
tendency of the temperature dependence for the thermod
sion coefficient and sound attenuation coefficient by cons
ering just two thermodynamic points. This requires more
tailed study and will be reported elsewhere.

The pair of propagating modesz2
6(k) together with the

thermodiffusive moded1(k) form the set of the generalize
hydrodynamic collective excitations. All other eigenvalu
correspond to kinetic modes, the damping coefficients
which, in contrast to generalized hydrodynamic ones, ten
some finite values whenk goes to zero, so that these excit
tions have a finite lifetime and do not contribute to the h
drodynamic long-time behavior. However, as is seen in F
6, the real parts of the generalized hydrodynamic and kin
modes become comparable for intermediate and large va
of k. Hence, the role of kinetic modes increases beyond
hydrodynamic region.

The spectra of generalized collective excitations, obtain
within the nine-variable~11! treatment, contain in the small
k region two branches of kinetic propagating excitations a
two kinetic relaxing modes. Note that the high-frequen
branches of kinetic propagating modesz3

6(k) andz4
6(k) cor-
2-8
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FIG. 6. Spectra of collective excitations of liquid Pb at 623 K~a! and 1170 K~b!, obtained for the nine-variable basis setA(9)(k,t).
Complex and purely real eigenvalues are shown by symbols, connected by spline-interpolated solid and dashed lines, respectively
symbols in the upper and lower frames correspond to the imaginary and real parts of the propagating modes, except for the c
splitting of the complex-conjugated eigenvaluez1(k) into two real ones for smallk values. The straight dash-dotted lines in the upper fram
show the linear hydrodynamic dispersion of sound excitations.
d
an
t

b

xc
ru
se
,

ec
h
s
a
s

ng
, o
liz
ts
m

ns

. For
the

sets.
-
the

nd

gy

the
ari-
-
iva-

to
at

he
respond to extremely short-time excitations and appeare
our calculations because the dynamic variables with two
three dots in the basis setA(9)(k,t) were taken into accoun
@10,26#. When k increases, an additional branchz1

6(k) of
propagating modes appears as a result of the coupling
tween the purely relaxing modesd1(k) andd3(k). In order
to establish the physical meaning of these propagating e
tations we have to perform a special analysis of spect
formation. It is possible to do so by using separated sub
of the dynamical variables as was proposed, for instance
@26#.

D. Analysis of the physical origin of different branches
of the propagating modes

To establish the origin of all kinetic branches in the sp
trum of collective excitations in liquid lead, we have used t
following quite general scheme. First, separated subset
the dynamic variables, which have a clearer physical me
ing, are introduced. For instance, one can split the basis
A(9)(k,t) into two subsets of dynamic variables, describi
the viscoelastic and thermal properties of a liquid, so that
the second step of our analysis, the spectra of genera
collective modes are calculated for the separated subse
dynamical variables. Third, the results obtained are co
pared with the spectrum found for the basis setA(9). This
allows us to investigate the origin of collective excitatio
and to estimate the role of mode coupling effects, caused
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the interplay between viscoelastic and thermal processes
a weak coupling one can expect that some branches in
spectrum obtained for the ‘‘coupled’’ basis setA(9) will be
reproduced by branches evaluated on the separated sub
Such a scheme was applied@9,26# to the study of the trans
verse dynamics in binary liquids and enabled us to prove
existence opticlike excitations in nonionic binary liquids a
establish their origin.

Let us define a new dynamic variableh(k,t) as follows:

h~k,t !5e~k,t !2
f ne~k!

f nn~k!
n~k,t !. ~21!

It is easy to verify that this variable, in contrast to the ener
densitye(k,t), is orthogonal@19,20# to the density of par-
ticles n(k,t), so that the variableh(k,t) is more convenient
for an analysis of thermal properties, decoupled from
viscoelastic ones. Note that the set of the hydrodynamic v
ables n(k,t),J(k,t),h(k,t) contains only orthogonal dy
namic variables and can be extended by their time der
tives. The dynamical variableh(k,t) describes, in fact, the
heat density fluctuations@39,40#, and in the hydrodynamic
limit the thermodiffusive mode emerges exclusively due
heat density fluctuations. In Fig. 8 the MD results obtained
T51170 K for the time correlation functionFhh(k,t) are
shown for differentk values. One can see that even for t
smallest valuekmin achieved in our MD simulations, this
2-9
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TARAS BRYK AND IHOR MRYGLOD PHYSICAL REVIEW E 63 051202
time correlation function does not have the sing
exponential form expected from a separated treatment of
fluctuations@39#.

To understand the shape of time correlation functio
Fhh(k,t), shown in Fig. 6, we considered the ‘‘thermal
subsetA(4h)(k,t) of four dynamical variables,

A(4h)~k,t !5$h~k,t !,ḣ~k,t !,ḧ~k,t !,ĥ~k,t !%, ~22!

which together with another separated subsetA(5)(k,t) ~the
‘‘viscoelastic’’ one!,

A(5)~k,t !5$n~k,t !,Jl~k,t !,J̇l~k,t !,J̈l~k,t !, Ĵ l~k,t !%,
~23!

form in fact the basis setA9(k,t). Hence, one can expect th
the spectra of generalized collective modes, obtained for
separated subsets~22! and ~23!, will reflect information

FIG. 7. Dispersion and damping coefficient of generaliz
sound excitationsz2(k) for liquid Pb at 623 K~solid triangles! and
1170 K ~open triangles!. Solid lines denote the spline interpolatio

TABLE I. Estimated parameters of generalized hydrodynam
excitations for liquid Pb at two thermodynamic states:cs , G, and
DT are the sound velocity, sound attenuation coefficient, and t
mal diffusivity, respectively.

T @K# n @Å23# cs @m/s#
G

@1027 m2/s#
DT

@1027 m2/s#

623 0.030 94 1739.36 1.297 1.563
1170 0.028 90 1602.61 1.139 1.283
05120
-
at

s

e

about the decoupled thermal and viscoelastic propertie
the system and will give us additional information about t
origin of generalized collective modes, calculated for t
‘‘coupled’’ nine-variable set~11! ~see Fig. 6!. The results of
our calculations, obtained for the separated subsets~22! and
~23!, are presented in Fig. 9 by dashed and solid spli
interpolated lines, respectively. For the sake of convenien
the dispersions of generalized collective modes, found
the ‘‘coupled’’ set~11!, are also shown here by symbols. It
clearly seen that the propagating modesz1

6(k) are caused by

c

r-

FIG. 8. Normalized ‘‘heat-density–heat-density’’ time correl
tion functionFhh(k,t), obtained in MD simulations for four value
of wave numberk at the temperatureTh51170 K.

FIG. 9. Imaginary parts of propagating collective excitation
obtained for the separated subsetsA(5)(k,t) ~spline interpolated,
solid line! and A(4h)(k,t) ~spline interpolated, dashed line!. Sym-
bols denote the same eigenvalues as in Figs. 6~a! and 6~b!.
2-10
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COLLECTIVE DYNAMICS IN LIQUID LEAD: . . . PHYSICAL REVIEW E 63 051202
heat fluctuations and describe the low-frequency heat wa
The branchz2

6(k) is well reproduced within the viscoelast
treatment and corresponds to generalized sound excitat
One can see also that in the region of the main peak loca
of the static structure factork'kp the branchz2

6(k) has a
minimum, which is much more pronounced at higher te
perature. This implies that for very high temperatures o
can expect in liquid Pb a propagation gap for generali
sound excitations with wave numberk'kp . The high-
frequency branchesz3

6(k) and z4
6(k) have mainly thermal

and viscous origin, but their positions are strongly affec
by lower branches due to the mode coupling effects. It is a
interesting that fork.1 Å21 the high-frequency branch o
heat waves, obtained for the separated subset~22!, follows
qualitatively the shape of the low-frequency heat branch

In our recent studies of the dynamical properties for liqu
Bi @23# and Cs @34#, performed within the nine-variable
GCM approach, the high-frequency branches of heat wa
have been obtained with thek dependence being very simila
to one found for the high-frequency heat modes in liqu
lead~see symbols and upper dashed lines in Fig. 9!. In con-
trast to the case of liquid Pb, where the propagation gap
the low-frequency heat waves is found to be very small,kH
'0.4 Å21, the propagating gap in liquid Cs was muc
wider (kH'2 Å21), and for liquid semimetallic Bi the low-
frequency branch of heat waves was not found at all wit
the range ofk studied (k,3 Å21). Comparing the behavio
of two branches of heat waves, obtained for the separ
subsetA(4h)(k,t) ~upper dashed lines in Fig. 9! and within
the nine-variable treatment~shown by symbols in Fig. 9!,
one can make the following conclusion: the dynamical c
pling between heat and viscous processes leads to a re
tion of the propagation gap for low-frequency heat wav
and pushes upwards the high-frequency branch of heat w
in the range of small and intermediate values of wa
numbers.

E. Low-frequency heat waves: Condition of existence

In order to understand the difference found for the lo
frequency heat waves in liquid Pb and liquid Cs and to
tain the expression for the propagating gap, which allows
to estimate roughly its width, an additional investigation h
to be performed. It could be done by taking into account t
the coupling between heat and density fluctuations beco
negligible when the ratio~18! of generalized specific heat
g(k) is close to 1.0@14,15#. Having this in mind let us con-
sider the simplest nontrivial approximation within the GC
approach which follows from a two-variable descriptio
based only on the heat density operators. Note that in
one-variable approximation an one-exponential form@39#

Fhh
(1)~k,t !/Fhh

(1)~k,0!5e(2l/nCV)k2t ~24!

for the time correlation functionFhh
(1)(k,t) follows immedi-

ately from our scheme, wherel andn are the thermal con
ductivity coefficient and the number density, respectively.
Fig. 8 one can see that even fork'kmin the MD-derived
function Fhh(k,t) contains oscillations, which appear due
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contributions of acousticlike excitations. However, as can
proved analytically within the hydrodynamic approach, th
function is well described for small wave numbers by
exponential function~24! with weak acoustic oscillations o
order of magnitude;(121/g). Thus, in the case of liquid
metals, wheng is close to unity, the approximated expre
sion ~24! for the treatment of heat fluctuations could be co
sidered as acceptable.

Within a two-variable approximation, which was prev
ously used by us for the description of shear waves in liqu
@20,22,10#, one can write down the expression for the gen
alized hydrodynamic matrix~4!, evaluated for the two-
variable setA(2h)5$h(k,t),ḣ(k,t)%, as follows:

T~k!5F0~k,0!@ F̃0~k,0!#215S 0 21

v̄2,h v̄2,hthD , ~25!

where thek-dependent Maxwell-like time of relaxationth(k)
is defined by Eq.~14!, and the functionv̄2,h(k) is the
second-order frequency moment ofFhh(k,t), namely,
v̄2,h(k)5 f ḣḣ(k)/ f hh(k). In Fig. 10 one can see that the fun
tion v̄2,h(k) in the small-k region is proportional tok2. Tak-
ing into account the definition~21! and the conserved prop
erties of the hydrodynamic variablese(k,t) andn(k,t), such
a behavior can be obtained analytically. This allows us
rewrite the second-order frequency momentv̄2,h(k) as fol-
lows:

v̄2,h~k!5
k2Gh~k!

r
, ~26!

wherer is the mass density and we introduced the funct
Gh(k) with the dimensionality of pressure, which has
analogy with the rigidity modulus in the case of transve
dynamics. In the case of heat fluctuationsGh(k) can be
called as ak-dependent heat-rigidity modulus. Obviousl
Gh(k) tends to a constant in hydrodynamic limit. The form
analogy in the treatment between the heat and shear

FIG. 10. The second frequency moment of the ‘‘heat-densi
heat-density’’ time correlation function, divided byk2, at tempera-
turesTl5623 K ~squares! andTh51170 K ~circles!.
2-11
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TARAS BRYK AND IHOR MRYGLOD PHYSICAL REVIEW E 63 051202
cesses is well known in the theory of continuous media@12#.
Let us use this analogy to get an interpretation for o
theoretical results obtained in the framework of statisti
physics.

Using Eq.~25! one can immediately write down the ex
pression for the eigenvalues of the generalized hydro
namic matrixT(k) in the two-variable approximation:

zh
6~k!5

v̄2,h~k!th~k!

2
6F v̄2,h

2 ~k!th
2~k!

4
2v̄2,h~k!G1/2

.

~27!

This equation gives in fact the spectrum of heat excitati
in our simplified theory. One can see that there exists
different kinds of solutions~27!. In the case when

v̄2,hth
2~k!

4
,1, ~28!

one has two complex-conjugated eigenvalues

zh
65sh~k!6 ivh~k!,

which describe the heat waves, propagating in opposite
rections, with frequencyvh(k) and dampingsh(k). Other-
wise, we find two purely relaxing modes as was observe
Fig. 6.

The condition~28! allows us to estimate the width of th
propagating gap in which the low-frequency heat waves
not supported by a liquid. For a rough estimation the expr
sion ~24! can be used for the calculation of the correlati
time th(k). Then, using Eq.~26! for small values ofk, we
get the following equation:

kH.
nCV

2l
AGh

r
, ~29!

so that fork,kH ~inside the propagation gap! one has two
purely real eigenvalues, which in the small-k region behave
like

zh
1~k!5d2h~k!5

CVGh

ml
2

l

nCV
k2,

zh
2~k!5d1h~k!5

l

nCV
k2.

Note that the eigenvaluezh
2(k) describes just the thermodif

fusive hydrodynamic mode, calculated in the viscoelastic
proximation ~see @39#!. Beyond the propagating gap (k
,kH) we find two propagating excitations with comple
, H
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conjugated eigenvalues. It is worth mentioning that Eq.~29!
can be improved if we use for the calculation ofth(k) a
more precise expression for the time correlation funct
Fhh(k,t), which is known from hydrodynamic three-variab
theory @14,15#. In such a case viscoelastic effects could
partly taken into consideration. However, the general pict
will remain the same: there always exists a propagation
for the low-frequency heat waves in a liquid with the wid
depending on the values of the thermal conductivity, spec
heat at constant volume, and heat-rigidity modulus.

We end this section with an expression for the time c
relation functionFhh(k,t) found in the two-variable approxi
mation:

Fhh
(2)~k,t !

Fhh
(2)~k,0!

52
zh

2~k!

zh
1~k!2zh

2~k!
e2zh

1(k)t

1
zh

1~k!

zh
1~k!2zh

2~k!
e2zh

2(k)t. ~30!

It is important to note that this expression reproduces exp
itly the frequency moments of the genuine functionFhh(k,t)
up to the second order included.

IV. CONCLUSIONS

The main results of this study are the following.
~i! Beyond the hydrodynamic region the spectrum of c

lective excitations of liquid metallic Pb, obtained within th
nine-variable approximation of the parameter-free method
generalized collective modes, contains four branches
propagating excitations: generalized sound modes and
low- and two high-frequency branches ofkinetic modes.

~ii ! Heat fluctuations cause not only thermodiffusive pr
cesses, but for larger wave numbers they also stimulate
appearance of two branches of heat waves. In liquid l
there exists a rather small propagation gap for the lo
frequency heat waves.

~iii ! A simple analytical two-variable treatment allow
one to explain the existence of the propagation gap for lo
frequency heat waves and to estimate its width.

In Ref. @41# we will report the results obtained for th
mode contributions to time correlation functions and foc
more attention on the role of the purely relaxing kine
moded2(k).
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